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Abstract
A method is presented for calculating the Lie point symmetries of a
scalar difference equation on a two-dimensional lattice. The symmetry
transformations act on the equations and on the lattice. They take solutions
into solutions and can be used to perform symmetry reduction. The method
generalizes the one presented in a recent publication for the case of ordinary
difference equations. In turn, it can easily be generalized to difference systems
involving an arbitrary number of dependent and independent variables.

PACS numbers: 02.20.−a, 02.20.Sv, 02.30.−f, 02.90.+p

1. Introduction

A recent paper [1] was devoted to Lie point symmetries acting on ordinary difference equations
and lattices, while leaving their set of solutions invariant. The purpose of this paper is to extend
the previously obtained methods and results to the case of partial difference equations, i.e.
equations involving more than one independent variable.

Algebraic techniques, making use of Lie groups and Lie algebras, have proved themselves
to be extremely useful in the theory of differential equations [2].

When applying similar algebraic methods to difference equations, several decisions have
to be made.

The first decision is a conceptual one. One can consider difference equations and lattices
as given objects to be studied. The aim then is to provide tools for solving these equations,
simplifying the equations, classifying equations and their solutions and identifying integrable
or linearizable difference equations [1, 3–26]. Alternatively, one can consider difference
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equations and the lattices on which they are defined to be auxiliary objects. They are introduced
in order to study solutions of differential equations, numerically or otherwise. The question
to be asked in this is: how does one discretize a differential equation while preserving its
symmetry properties? [27–31]

In this paper we take the first point of view: the equation and the lattice are a priori given.
The next decision to be made is a technical one: which aspect of symmetry to pursue. For
differential equations one can look for point symmetries or generalized ones. When restricting
to point symmetries and constructing the Lie algebra of the symmetry group, one can use vector
fields acting on dependent and independent variables. Alternatively and equivalently, one can
use evolutionary vector fields acting only on dependent variables. For difference equations,
these two approaches are in general not equivalent and may lead to different results, both of
them being correct and useful.

Several aspects of symmetry for discrete equations were pursued in earlier papers by
two of the present authors (DL and PW) and collaborators. The ‘intrinsic method’ which
provides, in an algorithmic way, all purely point symmetries of a given differential-difference
equation on a given uniform fixed lattice was introduced in [4]. This was complemented by
the ‘differential equations method’ in [5]. In addition to point symmetries, the differential
equation method provides a class of generalized symmetries. It was pointed out that in many
cases the two methods provide the same result, i.e. all symmetries are point symmetries.
The two methods were successfully applied to many specific problems [5, 7, 12, 13, 16].
The advantages of these two approaches are their simplicity, algorithmic character and close
analogy to symmetries of differential equations. Their disadvantage is that many interesting
symmetries, such as rotations among discrete variables, are lost in this approach.

A complementary approach was first developed for linear difference equations [8, 19],
again given on fixed uniform lattices. It was formulated in terms of linear difference operators,
commuting with the linear operator defining the original difference equation. This approach
provides a large number of symmetries and the symmetry algebras of the discrete equations and
their continuous limits are actually isomorphic. The symmetries of the difference equations
are not point ones: they act at many points of the lattice. They do however provide flows that
commute with the flow determined by the original equation and can thus be used to obtain
solutions.

This aspect of commuting flows has been adapted to nonlinear difference and differential-
difference equations [9–11, 15, 17]. The equations are defined on a fixed and uniform lattice.
Generalized symmetries are considered together with point ones and some of the generalized
symmetries reduce to point ones in the continuous limit. The methods for finding these
generalized symmetries rely either on linearizability, as in the case of the discrete Burgers
equation [9], or on integrability (the existence of a Lax pair) as in the case of the Toda hierarchy
[10, 11, 15] or the discrete nonlinear Schrödinger equation [17, 18].

This symmetry approach is powerful whenever it is applicable. Together with point and
generalized symmetries it provides Bäcklund transformations as a composition of infinitely
many higher symmetry transformations. This aspect has been explored in detail for the Toda
lattice [15]. We emphasize that Bäcklund transformations for difference equations, just as for
differential equations, are not obtained directly as Lie symmetries (not even as generalized
symmetries).

Each of the above methods has its own merits and will be developed further in the future.
In this paper we take the same point of view as in our recent paper [1]. We consider point

symmetries only and use the formalism of vector fields acting on all variables, dependent and
independent ones. In [1] we considered only one discretely changing variable. The lattice
was not fixed. Instead it was given by a further difference equation. Point symmetries act
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on the entire difference system: the equation and the lattice. The lattice is not necessarily
uniform and we explored the effect of choosing different types of lattices. The idea of using
transforming lattices is due to Dorodnitsyn and co-workers [27–31]. We differ from them in
one crucial aspect. They start from a given symmetry group and construct invariant difference
schemes for a given group. We, on the other hand, start from a given difference scheme and
find its Lie point symmetry group. Previously this was done for the case of one independent
variable. In this paper we generalize to the multidimensional case. The generalization is by
no means trivial. The lattice is given by N2 equations, where N is the number of independent
variables, all of them varying discretely. Transformations of continuously varying independent
variables, if present, are also taken into account.

We stress that the approach of this paper complements those of previous ones. The
results of [4, 5] are obtained if we choose a special form of the lattice (e.g. xm+1 − xm = h
in the case of one independent variable, where h is a fixed, nontransforming constant). We
purposely avoid any use of integrability. Like Lie theory for differential equations, this
approach is applicable to arbitrary differential systems, integrable or not.

A general formalism for determining the symmetry algebra is presented in section 2. It
generalizes the algorithm presented earlier [1] for ordinary difference equations to the case of
several independent variables. In section 3 we apply the algorithm to a discrete linear heat
equation which we consider on several different lattices, each providing its own symmetries.
Section 4 is devoted to difference equations on lattices that are invariant under Lorentz
transformations. In section 5 we discuss two different discrete Burgers equations, one being
linearizable and the other not. The lattices are the same in both cases, the symmetry algebras
turn out to be different. Section 6 treats symmetries of differential-difference equations, i.e.
equations involving both discrete and continuous variables. The conclusions are drawn in
section 7.

2. General symmetry formalism

2.1. The difference scheme

For clarity and brevity, let us consider one scalar equation for a continuous function of two
(continuous) variables: u = u(x, t). A lattice will be a set of points Pi, lying in the plane R

2

and stretching in all directions with no boundaries. The points Pi in R
2 will be labelled by

two discrete labels Pm,n. The Cartesian coordinates of the point Pm,n will be (xm,n, tm,n) with
−∞ < m < ∞, −∞ < n < ∞ (we are of course not obliged to use Cartesian coordinates).
The value of the dependent variable at the point Pm,n will be denoted as um,n = u(xm,n, tm,n).

A difference scheme will be a set of equations relating the values of {x, t, u} at a finite
number of points. We start with one ‘reference point’Pm,n and define a finite number of points
Pm+i,n+j in the neighbourhood of Pm,n. They must lie on two different curves intersecting at
Pm,n. Thus, the difference scheme will have the form

Ea({xm+i,n+j , tm+i,n+j , um+i,n+j }) = 0
(1)

1 � a � 5 −i1 � i � i2 −j1 � j � j2 i1, i2, j1, j2 ∈ Z
�0.

The situation is illustrated in figure 1. It corresponds to a lattice determined by six
points. Our convention is that x increases as m grows and t increases as n grows (i.e.
xm+1,n − xm,n ≡ h1 > 0, tm,n+1 − tm,n ≡ h2 > 0). The scheme in figure 1 could be used, for
example to approximate a differential equation of third order in x and second order in t.
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Figure 1. Points on a lattice.

Of the above five equations in (1), four determine the lattice and one the difference
equation. If a continuous limit exists, it is a partial differential equation in two variables. The
four equations determining the lattice will reduce to identities (e.g. 0 = 0).

The system (1) must satisfy certain independence criteria. Starting from the reference
point Pm,n and a given number of neighbouring points, it must be possible to calculate the
values of {x, t, u} at all points. This requires a minimum of five equations to calculate the
(x, t) in two directions and u at all points. For instance, to move upward and to the right
along the curves passing through Pm,n (with either m or n fixed) we impose a condition on the
Jacobian

|J | =
∣∣∣∣ ∂(E1, E2, E3, E4, E5)

∂(xm+i2,n, tm+i2,n, xm,n+j2 , tm,n+j2 , um+i2,n+j2)

∣∣∣∣ 	= 0. (2)

As an example of a difference scheme, let us consider the simplest and most standard
lattice, namely a uniformly spaced orthogonal lattice and a difference equation approximating
the linear heat equation on this lattice. Equations (1) in this case are

xm+1,n − xm,n = h1 tm+1,n − tm,n = 0 (3)

xm,n+1 − xm,n = 0 tm,n+1 − tm,n = h2 (4)
um,n+1 − um,n

h2
= um+1,n − 2um,n + um−1,n

(h1)2
(5)

where h1 and h2 are constants.
The example is simple and the lattice and the lattice equations can be solved explicitly to

give

xm,n = h1m + x0 tm,n = h2n + t0. (6)

The usual choice is x0 = t0 = 0, h1 = h2 = 1 and then x is simply identified with m and t
with n. We need the more complicated two-index notation to describe arbitrary lattices and to
formulate the symmetry algorithm (see below).

The example suffices to bring out several points:

1. Four equations are needed to describe the lattice.
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2. Four points are needed for equations of the second order in x and first order in t. Only the
first three points figure in the lattice equation, namely Pm+1,n, Pm,n and Pm,n+1. To get the
fourth point, Pm−1,n, we shift m down by one unit in equations (3)–(5).

3. The independence condition (2) is needed to solve for xm+1,n, tm+1,n, xm,n+1, tm,n+1 and
um,n+1.

2.2. Symmetries of the difference scheme

We are interested in point transformations of the type

x̃ = Fλ(x, t, u) t̃ = Gλ(x, t, u) ũ = Hλ(x, t, u) (7)

where λ is a group parameter, such that when (x, t, u) satisfy the system (1) then (x̃, t̃ , ũ)
satisfy the same system. The transformation acts on the entire space (x, t, u), at least locally,
i.e. in some neighbourhood of the reference point Pm,n, including all points Pm+i,n+j figuring
in equation (1). This means that the same functions F, G and H determine the transformation
of all points. The transformations (7) are generated by the vector field

X̂ = ξ(x, t, u)∂x + τ (x, t, u)∂t + φ(x, t, u)∂u. (8)

We wish to find the symmetry algebra of the system (1), that is the Lie algebra of the local
symmetry group of local point transformations. To do this we must prolong the action of the
vector field X̂ from the reference point (xm,n, tm,n, um,n) to all points figuring in the system
(1). Since the transformations are given by the same functions F, G and H at all points, the
prolongation of the vector field (8) is obtained simply by evaluating the functions ξ , τ and φ
at the corresponding points.

In other words, we can write

pr X̂ =
∑
m,n

[
ξ(xm,n, tm,n, um,n)∂xm,n + τ (xm,n, tm,n, um,n)∂tm,n + φ(xm,n, tm,n, um,n)∂um,n

]

(9)

where the summation is over all points figuring in the system (1). The invariance requirement
is formulated in terms of the prolonged vector field as

pr X̂ Ea
∣∣
Eb=0 1 � a, b � 5. (10)

Just as in the case of ordinary difference equations, we can turn equation (10) into an
algorithm for determining the symmetries, i.e. the coefficients in vector field (8).

The procedure is as follows:

1. Use the original equations (1) and the Jacobian condition (2) to express five independent
quantities in terms of the other ones, e.g.,

v1 = xm+i2,n v2 = tm+i2,n v3 = xm,n+j2 (11)
v4 = tm,n+j2 v5 = um+i2,n+j2

as

va = va(xm+i,n+j , tm+i,n+j , um+i,n+j ) − i1 � i � i2 − 1 −j1 � j � j2 − 1.

(12)

2. Write the five equations (10) explicitly and replace the quantities va using equation (12).
We obtain five functional equations for the functions ξ , τ and φ evaluated at different
points of the lattice. Once the functions va are substituted into these equations, each value
of xi,k, ti,k and ui,k is independent. Moreover, it can only figure via the corresponding
ξi,k, τi,k and φi,k (with the same values of i and k), via the functions va or explicitly via
the functions Ea.
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3. Assume that the dependence of ξ , τ and φ on their variables is analytic. Convert the
obtained functional equations into a system of differential equations by differentiating
with respect to the variables xi,k, ti,k and ui,k. This provides an overdetermined system of
linear partial differential equations which we must solve.

4. The solutions of the differential equations must be substituted back into the functional
ones, which in turn must be solved.

The above algorithm provides us with the functions ξ (x, t, u), τ (x, t, u) and φ(x, t, u)
figuring in equation (8). The finite transformations of the (local) Lie symmetry group are
obtained in the usual manner by integrating the vector field (8):

dx̃

dλ
= ξ(x̃, t̃ , ũ)

dt̃

dλ
= τ (x̃, t̃ , ũ)

dũ

dλ
= φ(x̃, t̃, ũ)

(13)
x̃|λ=0 = x t̃ |λ=0 = t ũ|λ=0 = u.

3. Discrete heat equation

The heat equation in one dimension,

ut = uxx (14)

is invariant under a six-dimensional Lie group corresponding to translations in x and t,
dilations, Galilei transformations, multiplication of u by a constant and expansions. It is also
invariant under an infinite-dimensional pseudo-groupcorresponding to the linear superposition
principle.

Symmetries of the discrete heat equation have been studied using different methods and
imposing different restrictions on the symmetries [8, 19, 27, 28].

Here we will use the discrete heat equation to illustrate the methods of section 2 and to
show the influence of the choice of the lattice.

3.1. Fixed rectangular lattice

The discrete heat equation and a fixed lattice were given in equations (5) and (3), (4),
respectively. Applying the operator (9) to the lattice, we obtain

ξ(xm+1,n, tm+1,n, um+1,n) = ξ(xm,n, tm,n, um,n) (15)

ξ(xm,n+1, tm,n+1, um,n+1) = ξ(xm,n, tm,n, um,n). (16)

The values um+1,n, um,n+1 and um,n are not related by equation (5) (since it also contains
um−1,n). Hence, if we differentiate equations (15) and (16), for example, with respect to um,n,
we find that ξ is independent of u. We have tm+1,n = tm,n, so equation (15) implies that ξ does
not depend on x. Similarly, equation (16) implies that ξ does not depend on t. Hence ξ is
constant. Similarly, we obtain that τ (x, t, u) is also constant. Applying the prolongation pr X̂
to equation (5), we obtain the functional equation

φm,n+1 − φm,n = h2

(h1)2
(φm+1,n − 2φm,n + φm−1,n) (17)

with, for example, φm,n ≡ φ(xm,n, tm,n, um,n).
In φm,n+1 we replace um,n+1 using equation (5). We then differentiate with respect to

um+1,n and again with respect to um−1,n. We obtain

φm,n = A(xm,n, tm,n)um,n + B(xm,n, tm,n). (18)

Substituting (18) into equation (17), using (5) again and setting the coefficients of um+1,n,

um−1,n, um,n and 1 equal to 0 separately, we find that A must be constant and B must be a
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solution of equation (5). Thus, the symmetry algebra of the heat equation on the lattice (3), (4)
is given by

P̂ 0 = ∂t P̂ 1 = ∂x Ŵ = u∂u Ŝ = S(x, t)∂u (19)

with S a solution of the equation itself. Thus, the only symmetries are those due to the fact
that the equation is linear and autonomous.

3.2. Lattices invariant under dilations

There are at least two ways of making the discrete heat equation invariant under dilations.

3.2.1. A five-point lattice. We replace the system of equations (3)–(5) by

xm+1,n − 2xm,n + xm−1,n = 0 xm,n+1 − xm,n = 0 (20)

tm+1,n − tm,n = 0 tm,n+1 − 2tm,n + tm,n−1 = 0 (21)

um,n+1 − um,n

tm,n+1 − tm,n
= um+1,n − 2um,n + um−1,n

(xm+1,n − xm,n)2
. (22)

Applying prolongation (8) to equation (20) and substituting for xm+1,n, tm+1,n, tm,n+1 and
xm,n+1 from equations (20) and (21) we obtain

ξ(2xm,n − xm−1,n, tm,n, um+1,n)− 2ξ(xm,n, tm,n, um,n) + ξ(xm−1,n, tm−1,n, um−1,n) = 0 (23)

ξ(xm,n, 2tm,n − tm,n−1, um,n+1) = ξ(xm,n, tm,n, um,n). (24)

Since um, n + 1 and um, n are independent, a differentiation of (24) with respect to say
um−1,n (contained on the left-hand side via um, n+1) implies that ξ does not depend on u.
Differentiating (24) with respect to tm, n−1, we find that ξ cannot depend on t either. Putting
ξ = ξ (x) into equation (23) and taking the second derivative with respect to xm−1,n and xm,n,
we obtain that ξ is linear in x. Similarly, invariance of equation (21) restricts the form of
τ (x, t, u). Finally, the lattice (20), (21) is invariant under the transformation generated by X̂
with

ξ = αx + β τ = γ t + δ. (25)

Now let us apply pr X̂ to equation (22). We obtain

φm,n+1 − φm,n

tm,n+1 − tm,n
= φm+1,n − 2φm,n + φm−1,n

(xm+1,n − xm,n)2
− (2α − γ )

um+1,n − 2um,n + um−1,n

(xm+1,n − xm,n)2
. (26)

Taking the second derivative ∂um+1,n∂um−1,n of equation (26) after using equation (22) to
eliminate um,n+1, we find φm,n = Am,n(x, t)um,n + Bm,n(x, t). Substituting back into equation
(26) we obtainAm,n = A = const, and we see that Bm,n(x,t) must satisfy the original difference
system. Moreover, we obtain the restriction γ = 2α.

Finally, on the lattice (20), (21) the heat equation (22) has a symmetry algebra generated
by the operators (19) and the additional dilation operator

D̂ = x∂x + 2t∂t . (27)

We mention that the lattice equations (20) and (21) can be solved to give x = am + b, t =
cn + d. At first glance this seems to coincide with the lattice (6). The difference is that in
equation (6) h1 and h2 are fixed constants. Here a, b, c and d are integration constants that
can be chosen arbitrarily. In particular, they can be dilated. Hence the additional dilational
symmetry.
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3.2.2. A four-point lattice. We need only four points to write the discrete heat equation, so
it makes sense to write a four-point lattice. Let us define the lattice by the equations

xm+1,n − 2xm,n + xm−1,n = 0 xm,n+1 − xm,n = 0 (28)

tm+1,n − tm,n = 0 tm,n+1 − tm,n − c(xm+1,n − xm,n)
2 = 0. (29)

On this lattice the discrete heat equation (22) simplifies to

um,n+1 − um,n = c(um+1,n − 2um,n + um−1,n). (30)

Applying the same method as above, we find that invariance of the lattice implies ξ = Ax +B,
τ = 2At + C. Invariance of equation (30) then implies φ = Du + S(x, t), where A,B,C and
D are constants and S(x, t) solves the discrete heat equation. Thus, the discrete heat equation
on the four-point lattice (28), (29) is invariant under the same group as on the five-point lattice
(20), (21).

3.3. Exponential lattice

Let us now consider a lattice that is neither equally spaced nor orthogonal, given by the
equations

xm+1,n − 2xm,n + xm,n−1 = 0 xm,n+1 = (1 + c) xm,n (31)

tm,n+1 − tm,n = h tm+1,n − tm,n = 0 (32)

with c 	= 0, −1. These equations can be solved, and explicitly the lattice is

t = hn + t0 x = (1 + c)n (αm + β) (33)

where t0, α and β are integration constants. Thus, while t grows by constant increments, x
grows with increments which vary exponentially with time (see figure 2). Numerically, this
type of lattice may be useful if we can solve the equation asymptotically for large values of t
and are interested in the small t behaviour.

The heat equation on lattice (31), (32) can be written as

um,n+1 − um,n

h
= um+1,n − 2um,n + um−1,n

(xm+1,n − xm,n)2
. (34)

Applying the symmetry algorithm to the lattice equations (31) and (32), we find that the
symmetry algebra is restricted to

X̂ = [ax + b (1 + c)t/h] ∂x + τ0 ∂t + φ(x, t, u) ∂u, (35)

where a, b and τ 0 are arbitrary constants (whereas c and h are constants determining the
lattice). Invariance of equation (34) implies a = 0 in (35) and restricts φ(x, t, u) to reflect
the linearity of the equation and nothing more. The resulting symmetry algebra has a basis
consisting of

P̂ 1 = (1 + c)t/h ∂x P̂ 0 = ∂t Ŵ = u ∂u Ŝ = S(x, t) ∂u (36)

where S(x, t) satisfies the heat equation. We see that the system is no longer invariant under
space translations, or rather, that these ‘translations’ become time dependent and thus simulate
a transformation to a moving frame.
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Figure 2. Variables (x, t) as functions of m and n for the lattice equations (31) and (32). The
parameters and the integration constants are, respectively, c = √

2, h = 1 and α = π , β = 0,
t0 = 0.

3.4. Galilei invariant lattice

Let us now consider the following difference scheme:

um,n+1 − um,n

τ2
= τ 2

2
um+1,n − 2um,n + um−1,n

ζ 2
(37)

tm+1,n − tm,n = τ1 tm,n+1 − tm,n = τ2 (38)

xm+1,n − 2xm,n + xm−1,n = 0 (39)

(xm+1,n − xm,n)τ2 − (xm,n+1 − xm,n)τ1 = ζ (40)

where τ 1, τ 2 and ζ are fixed constants.
The lattice equations can be solved, and we obtain

tm,n = τ1m + τ2 n + t0 xm,n = στ1m +

(
στ1τ2 − ζ

τ1

)
n + x0 (41)

where σ , t0 and x0 are integration constants. The corresponding lattice is equally spaced and,
in general, nonorthogonal (see figure 3). Indeed, the coordinate curves corresponding to m =
const and n = const, respectively, are

x − x0 = σ (t − t0)− ζ

τ1
n

(42)
x − x0 = στ1τ2 − ζ

τ1τ2
(t − t0) +

ζ

τ2
m.
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Figure 3. Variables (x, t) as functions of m and n for the lattice equations (38)–(40). The
parameters and the integration constants are, respectively, τ 1 = 1, τ 2 = 2, ζ = 2 and σ = 1, x0 =
0, t0 = 0.

These are two families of straight lines, orthogonal only in the special case (σ 2 + 1)τ1τ2 = σζ .
If we choose

στ1τ2 − ζ = 0 (43)

then the second family of coordinate lines in equation (42) is parallel to the x-axis.
Invariance of equation (38) implies that in the vector field, we have τ (x, t, u) = α = const.

From the invariance of equation (39) we obtain ξ = A(t) x + B(t) with

A(tm+1,n) = A(tm,n) B(tm+1,n)− 2B(tm,n) + B(tm−1,n) = 0. (44)

Finally, invariance of equation (40) implies A(t) = 0 and B(t) = βt + γ , where β and γ are
constants. Now let us apply the prolonged vector field to equation (37). We obtain φ = Ru +
S(x, t), where S(x, t) satisfies the system (37)–(40). The symmetry algebra is given by

P̂ 0 = ∂t P̂ 1 = ∂x B̂ = t∂x Ŵ = u∂u Ŝ = S(x, t) ∂u. (45)

Thus, the system is Galilei invariant with Galilei transformation generated by the operator B̂.
Let us now consider the continuous limit of the system (37)–(40). We use the solution

(41) of the lattice equations (38)–(40) and for simplicity restrict the constants by imposing
equation (43). We have, from equations (41) and (43),

tm,n+1 = tm,n + τ2 xm,n+1 = xm,n
(46)

xm±1,n = xm,n ± στ1 tm±1,n = tm,n ± τ1.
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The continuous limit is obtained by pushing τ 1 � 1, τ 2 � 1, ζ � 1 and expanding both
sides of equation (37) into a Taylor series, keeping only the lowest order terms. The LHS of
equation (37) gives

um,n+1 − um,n

τ2
= u(xm,n, tm,n + τ2)− u(xm,n, tm,n)

τ2

= ut + O(τ2)

and the RHS is given by(
τ2

ζ

)2

(um+1,n − 2um,n + um−1,n) =
(
τ2

ζ

)2

[u(xm,n + στ1, tm,n + τ1)− 2u(xm,n, tm,n)

+ u(xm,n − στ1, tm,n − τ1)] = uxx +
2

σ
ux,t +

1

σ 2
utt + O(τ1).

The continuous limit of the system (37)–(40) is

ut = uxx +
2

σ
ux,t +

1

σ 2
utt σ 	= 0. (47)

The symmetry algebra of this equation, for any value of σ , is isomorphic to that of the heat
equation. In addition to the pseudo-group of the superposition principle, we have

P̂ 0 = ∂t D̂ = x∂x + 2t∂t − 1
2u∂u − cx∂t

K̂ = tx∂x + t2∂t − 1
2

(
t + 1

2x
2)u∂u − c

(
x2∂x + xt∂t − 1

2xu∂u
)

(48)
P̂ 1 = ∂x + c ∂t Ŵ = u∂u

B̂ = t∂x − 1
2xu∂u − c(x∂x − 2t∂t )− c2x∂t c ≡ 1/σ.

The fact that the commutation relations do not depend on c suggests that equation (47) could
be transformed into the heat equation. This is indeed the case and it suffices to put

u(x, t) = exp

(
c[(2 + c2)x + ct]

4(1 + c2)2

)
w(α, β)

(49)
α = x + ct β = (1 + c2)(t − cx)

to obtain

wβ = wαα. (50)

Note that while the difference equation (37) on the lattice (38)–(40) is Galilei invariant, this
invariance is realized in a different manner from that for the continuous limit (47). To see this,
compare the operator B̂ of equation (45) with that of equation (48).

4. Lorentz invariant equations

The partial differential equation

uxy = f (u) (51)

is invariant under the inhomogeneous Lorentz group, with its Lie algebra realized as

X̂1 = ∂x X̂2 = ∂y L̂ = y∂x − x∂y (52)

(for any function f (u)). In equation (51) x and y are ‘light cone’ coordinates. In the continuous
case we can return to the usual space–time coordinates z = x + y, t = x − y, in which we have

uzz − utt = f (u) (53)
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instead of equation (51), and the Lorentz group is generated by

P̂ 0 = ∂t P̂ 1 = ∂z L̂ = t∂z + z∂t . (54)

Let us now consider a discrete system, namely
um+1,n+1 − um,n+1 − um+1,n + um,n
(xm+1,n − xm,n)(ym,n+1 − ym,n)

= f (um,n) (55)

xm+1,n − 2xm,n + xm−1,n = 0 xm,n+1 − xm,n = 0 (56)

ym,n+1 − 2ym,n + ym,n−1 = 0 ym+1,n − ym,n = 0. (57)

Applying the operator pr X̂ (with t replaced by y) of equation (9) to equations (56) and (57),
we obtain

ξ = Ax + C η = By +D. (58)

Requesting the invariance of equation (55), we find that φ must be linear,

φ = α(x, y)u + β(x, y). (59)

The remaining determining equations yield α = α0 = const and

(A + B)
∂f

∂um,n
+ (α0um,n + β(x, y))

∂2f

∂u2
m,n

= 0. (60)

Thus, for any function f = f (u) we obtain the symmetries (52), just as in the continuous
case (they correspond to B = −A, α0 = β = 0). As in the continuous case, the symmetry
algebra can be larger for special choices of the function f (u). Let us analyse these cases.

4.1. Nonlinear interaction

We have f ′′ 	= 0; hence β = β0 = const. The function must then satisfy

(A + B − α0)f + (α0u + β)f ′ = 0. (61)

For α0 	= 0, we take

f = up p 	= 0, 1 (62)

(we have dropped some inessential constants). The system (55)–(57) is, in this case, invariant
under a four-dimensional group generated by the algebra (52), complemented by dilation

D̂ = x∂x + y∂y +
2

1 − p
u∂u. (63)

For α0 = 0, β 	= 0, we have

f = eu. (64)

The algebra is again four dimensional with the additional dilation

D̂ = x∂x + y∂y − 2∂u. (65)

4.2. Linear interaction f (u) = u

The only elements of the Lie algebra additional to (52) are

D̂ = u∂u Ŝ(β) = β∂u (66)

where β satisfies the system (55)–(57) with f (u) = u. The presence of D̂ and Ŝ(β) is just a
consequence of linearity.
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4.3. Constant interaction f (u) = 1

The additional elements of the Lie algebra are again a consequence of linearity, namely

L̂ = x∂x + y∂y + 2u∂u Ŝ = [S1(x) + S2(y)]∂u (67)

where S1(x) and S2(y) are arbitrary (because S1(x) + S2(y) is the general solution of equation
(55) with f (u) = 0 on the lattice (56), (57)).

Finding a discretization of equation (53), invariant under the group corresponding to (54),
is more difficult and we will not discuss it here.

As stressed in the introduction, the methods used in this paper can be applied to any
difference system, but they provide only point symmetries. We could treat the integrable
discrete Liouville and sine–Gordon equations of Faddeev [32], or Hirota [33], but we would
not obtain the generalized symmetries that are of interest. The correct formalism to use for
these equations is that of [11].

5. Discrete Burgers equation

The continuous Burgers equation is written as

ut = uxx + 2uux (68)

or in potential form as

vt = vxx + v2
x u ≡ vx . (69)

We shall determine the symmetry groups of two different discrete Burgers equations, both
on the same lattice. The lattice is one of those used above for the heat equation, namely the
four-point lattice (28), (29). Each of the four lattice equations involves at most three points.
Hence, for any difference equation on this lattice, involving all four points, the symmetry
algebra will be realized by vector fields of the form (8) with

ξ = Ax + B τ = 2At +D (70)

where A,B and D are constants (see section 3.2.2).

5.1. Nonintegrable discrete potential Burgers equation

An absolutely straightforward discretization of equation (69) on the lattice (28), (29) is

um,n+1 − um,n

tm,n+1 − tm,n
= um+1,n − 2um,n + um−1,n

(xm+1,n − xm,n)2
+

(
um+1,n − um,n

xm+1,n − xm,n

)2

. (71)

Applying the usual symmetry algorithm, we find a four-dimensional symmetry algebra

P̂ 1 = ∂x P̂ 0 = ∂t D̂ = x∂x + 2t∂t Ŵ = ∂u. (72)

5.2. A linearizable discrete Burgers equation

A different discrete Burgers equation was proposed recently [9]. It is linearizable by a discrete
version of the Cole–Hopf transformation. Using the notation of this paper, we write the
linearizable equation as

um,n+1 = um,n + c
(1 + hxum,n)[um+2,n − 2um+1,n + um,n + hxum+1,n(um+2,n − um,n)]

1 + chx[um+1,n − um,n + hxum,num+1,n]

hx ≡ xm+1,n − xm,n ht ≡ tm,n+1 − tm,n = ch2
x (73)

tm+1,n − tm,n = 0 xm,n+1 − xm,n = 0.
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Here c is a constant, but hx is a variable, subject to dilations. The determining equation is
obtained in the usual manner. It involves the function φm, n at all points figuring in equation
(73), and also the constant A of equation (70). The equation is too long to be included here,
but is straightforward to obtain. The variable that we choose to eliminate using equation (73)
is um,n+1. Differentiating twice with respect to um+2,n, we obtain

∂2φm,n+1

∂u2
m,n+1

∂um,n+1

∂um+2,n
= ∂2φm+2,n

∂u2
m+2,n

. (74)

We differentiate (74) with respect to um,n and then, separately, with respect to um−1,n. We
obtain two equations that are compatible for c(1 + c)2 hx (1 + hx um, n) = 0. Otherwise they
imply that φ is linear in u: φ = α(x, t) u + β(x, t). We have c 	= 0, hx 	= 0, but the case c =
−1 must be considered separately. We first introduce the expression for φ into the determining
equation and obtain, after a lengthy computation (using MAPLE), α = −A, β = 0. For
c = −1 we proceed differently, but obtained the same result. Finally, the Lie point symmetry
algebra of the system (73), (28), (29) has the basis

P̂ 0 = ∂t P̂ 1 = ∂x D̂ = x∂x + 2t∂t − u∂u. (75)

This result should be compared with the symmetry algebra of equation (73) on a fixed constant
lattice, which was found earlier [9]. The symmetry algebra found there was five dimensional.
It was inherited from the heat equation, via the discrete Cole–Hopf transformation. It was
realized in a ‘discrete evolutionary formalism’ by flows, commuting with the flow given by
the Burgers equation. The symmetries found there were higher symmetries and cannot be
realized in terms of the vector fields of the form considered in this paper.

6. Symmetries of differential-difference equations

6.1. General comments

Symmetries of differential-difference equations were discussed in our previous paper [1].
Here we shall put them into the context of partial difference equations and consider a further
example. As in the case of multiple discrete variables, we will consistently consider the action
of vector fields at points in the space of independent and dependent variables. To do this
we introduce a discrete independent variable n (or several such variables) and a continuous
independent variable α (or a vector variable �α). A point in the space of independent variables
will be Pn,α, whose coordinates are {xn,α, zn,α}, where both x and z can be vectors. The form
of the lattice is specified by some relations between xn,α, zn,α and un,α ≡ u(xn,α, zn,α).

We shall not present the general formalism here, but restrict to the case of one discretely
varying variable z ≡ zn, −∞ < n < ∞, and either one continuous (time) variable (t) or two
continuous variables (x, y).

For instance, a uniform lattice that is time independent can be given by the relations

zn+1,α − 2zn,α + zn−1,α = 0 (76)

zn,α − zn,α′ = 0 (77)

tn+1,α − tn,α = 0 (78)

where α′ is a different value of the continuous variable α.
Conditions (77) and (78) are rather natural. They state that time is the same at each point

of the lattice and that the lattice does not evolve in time. They are however not obligatory.
Similarly, equation (76) is not obligatory. The solution of equations (76)–(78) is of course
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trivial, namely

zn = hn + z0 t = t (α) (79)

and we can identify t and α (t = α, h and z0 are constants).
The prolongation of a vector field acting on a differential-difference scheme on the lattice

(76)–(78) will have the form

pr X̂ =
∑
n

[
τ (zn,α, tn,α, un,α) ∂tn,α + ζ(zn,α, tn,α, un,α) ∂zn,α

(80)
+φ(zn,α, tn,α, un,α) ∂un,α

]
+ · · ·

where the ellipsis signifies terms acting on time derivatives of u. Since un,α, un,α′ and un+1,α

are all independent, equations (77) and (78) imply

ζ = ζ(zn) τ = τ (t). (81)

On any lattice satisfying equations (77) and (78), we can simplify the notation and write

X̂ = ζ(z) ∂z + τ (t) ∂t + φ(z, t, u) ∂u. (82)

Similarly, for an equation with one discretely varying independent variable z and two
continuous variables (x, y), one can impose

zn+1,α1,α2 − 2zn,α1,α2 + zn−1,α1,α2 = 0 (83)

zn,α′
1,α2 − zn,α1,α2 = 0

(84)
zn,α1,α

′
2
− zn,α1,α2 = 0

xn+1,α1,α2 − xn,α1,α2 = 0
(85)

yn+1,α1,α2 − yn,α1,α2 = 0.

Invariance of the conditions (84) and (85) then implies that the vector fields realizing the
symmetry algebra have the form

X̂ = ζ(z)∂z + ξ(x, y)∂x + η(x, y)∂y + φ(z, x, y, u)∂u. (86)

We can again simplify notation identifying x = α1, y = α2 and solving (83) to give
zn = hn + z0 (h and z0 are constants).

6.2. Examples

We shall consider here just one example that brings out the role of the lattice equations very
clearly. The example is Toda field theory or the two–dimensional Toda lattice [13, 34, 35]. It
is given by the equation

un,xy = eun−1−un − eun−un+1 (87)

with un ≡ u(zn, x, y).
On the lattice (83)–(85) we start with equation (86) and have

pr X̂ = ξ(x, y)∂x + η(x, y)∂y +
1∑

k=−1

ζn+k(z)∂zn+k +
1∑

k=−1

φn+k ∂un+k + φxyn ∂un,xy (88)

where φxyn is calculated in the same way as for differential equations [2].
Applying (88) to equations (83) and (87), we find

ξ = ξ(x) η = η(y) ζn = Azn + B φn = βn(x, y, zn) (89)
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and we still have two equations to solve, namely

βn+1 − βn + ξx + ηy = 0 (90)

βn,xy = 0. (91)

On the lattice (83)–(85) zn+1 and zn are independent. Hence, we can differentiate (90) with
respect to zn+1 and find that βn+1 is independent of zn+1 and hence of n. We thus find a
symmetry algebra generated by

P̂ 1 = ∂x P̂ 2 = ∂y L̂ = x∂y − y∂x Ŝ = ∂z D̂ = z∂z
(92)

Û(k) = k(x)∂u V̂ (h) = h(y)∂u

where k(x) and h(y) are arbitrary smooth functions. Note that Ŝ and D̂ act only on the lattice
and Û(k) and V̂ (h) generate gauge transformations, acting only on the dependent variables.

If we change the lattice to a fixed, nontransforming one, i.e. replace (83) by

zn+1,α1,α2 − zn,α1,α2 = h (93)

h = const, the situation changes dramatically. We lose the dilation D̂ of equation (92); however
zn+1 and zn are now related by equation (93). The solution of equations (90) and (91) in this
case is

βn = z

h
(ξx + ηy) + k(x) + h(y). (94)

On this fixed lattice the Toda field equations are conformally invariant and the invariance
algebra is spanned by

X̂(f ) = f (x)∂x +
z

h
f ′(x)∂u Ŷ (g) = g(y)∂y +

z

h
g′(y)∂u

(95)
Û(k) = k(x)∂u V̂ (h) = h(y)∂u Ŝ = ∂z.

We see that giving more freedom to the lattice (three points zn+1, zn, zn−1 instead of two)
may lead to a reduction of the symmetry group, rather than to an enhancement. For the Toda
field theory the reduction is a drastic one: the two arbitrary functions f (x) and g(y) reduce to
f = ax + b and g = −ay + d , respectively (and only the element D̂ is added to the symmetry
algebra).

7. Conclusions and future outlook

The main conclusion is that we have presented an algorithm for determining the Lie point
symmetry group of a difference system, i.e. a difference equation and the lattice it is defined
on. The algorithm provides us with all Lie point symmetries of the system. In [1] we
considered only one discretely varying independent variable. In this paper we concentrated on
the case of two such variables. The case of an arbitrary number of dependent and independent
variables is completely analogous though it obviously involves more cumbersome notations
and lengthier calculations. The problem of finding the symmetry group is reduced to solving
linear functional equations. In turn, these are converted into an overdetermined system of
linear partial difference equations, just as in the case of differential equations. The fact that
the determining equations are linear, even if the studied equations are nonlinear, is due to the
infinitesimal approach.

The symmetry algorithm can be computerized, just as has been for differential equations.
In previous papers (other than [1]) we considered only one discretely varying variable

and a fixed (nontransforming) lattice [4–18]. The coefficients in the vector fields, realizing
the symmetry algebra, depended on variables evaluated at more than one point of the lattice,
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possibly infinitely many points. Thus, one obtained generalized symmetries together with point
symmetries. For integrable equations, including linear and linearizable ones, the symmetry
structure can be quite rich [8–11, 15, 17, 18]. In the continuous limit some of the generalized
symmetries reduce to point ones [11, 17, 18] and the structure of the symmetry algebra changes.

A detailed comparison of various symmetry methods is postponed to a future paper.
Applications of Lie point symmetries, as well as generalized symmetries, to the solution of
difference equations will be given elsewhere.

Acknowledgments

The work reported in this paper was performed while ST and PW were visiting the Dipartimento
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